USING CELLS FROM PATIENTS WITH MULTIPLE SYSTEMS ATROPHY OR PARKINSON'S DISEASE (PARK2, LRRK2, AND/OR GBA MUTATIONS) TO BUILD STEM CELL DERIVED DISEASE MODEL SYSTEMS

Bonnie J Hammer¹, Kun Bi¹, Spencer B Hermanson¹, Dave V. Thompson¹, Chetana Revankar¹, Connie S Lebakken¹, Marian S Piekarczyk¹, Laurie J Reichling¹, Tori Sampsell-Barron¹, Y. Anne Huang², Malini Vangipuram², Jessica Westfall², Michael Hancock, Birgitt Schüle², J. William Langston², Kurt W Vogel¹ 1Thermo Fisher, Life Sciences Solutions, Cell Biology, R&D, Madison, WI, 53719

²The Parkinson's Institute, Basic Research Department, Sunnyvale, CA, 94085

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects 1% of people over age 60 and more than five million people worldwide. PD research has been hindered by a lack of access to diseased tissue to study. However, with recent advances in stem cell biology, it is now possible to derive induced pluripotent stem cells (iPSCs) from control or PD patient fibroblasts and differentiate them into neurons. Concomitantly, there have been advances in gene editing technologies which now allow select mutations to be corrected or genes to be knocked out within iPSCs, resulting in pairs of cell lines with the same genetic background that differ by the presence or absence of specific disease-linked mutations or genes. Recently, Life Technologies has collaborated with the Parkinson's Institute to develop PD model systems using donor fibroblasts collected at the Institute. We created a set of six iPSC lines from three PD patients (harboring PARK2, LRRK2 and/or GBA mutations), one MSA patient, and two age-matched controls. TALEN gene editing was utilized to correct mutations/knock out genes within two of the patient derived iPSC lines. All of the iPSC lines (including the TALEN edited lines) were differentiated into neural stem cells (NSCs). These NSCs were directly utilized in functional assays to compare their response to a number of different cellular stressors and were further differentiated into dopaminergic neurons. We will complete our disease modeling by using the pairs of isogenic lines generated in this study to assess functional differences between edited and unedited cells in fully differentiated dopaminergic neurons.

technologies A Thermo Fisher Scientific Brand

Figure 4 Summary of Gene Editing Results

	iPSC line	Genotype	Karyotype	Pluripotent (ICC/ScoreCard)	Sequence confirmation	Off-target indels in exons	Estimated editing efficiency	Mycoplasma
	MSA	SNCA +/+	normal	yes	yes	n/a	n/a	negative
	MSA.21	SNCA +/-	normal	yes	yes	0	1.5%	negative
1	MSA.32	SNCA -/-	normal	yes	yes	0	0.8%	negative
	PD-3	LRRK2 wt/G2019S GBA wt/N370S	normal	yes	yes	n/a	n/a	negative
	PD-3.26	LRRK2 ^{wt/wt} GBA ^{wt/N370S}	normal	yes	yes	0	1.4%	negative

Figure 5 Comparison of LRRK2 Edited and Unedited NSCs Under **Starvation Conditions Reveals Functional Differences**

A NSCs Harboring a LRRK2 Mutation are More Susceptible to Cell Death

LIVE/DEAD/NucBlue®

INTRODUCTION

Parkinson's disease (PD) A progressive neurodegenerative disorder that affects 1% of people over age 60 and more than 5 million people worldwide. PD results primarily from the selective loss of dopaminergic neurons in the substantia nigra. The absence of physiologically relevant cellular models for PD represents a major bottleneck for PD research. Novel models are urgently needed to accelerate the discovery of disease mechanisms and drug targets as well as for screening purposes.

Generation of iPSCs using Sendai reprogramming vectors Sendai virus vector

> Endoplasmi reticulum (E rotein HM

All six iPSC-derived NSC lines stained positive for known neural markers Sox1, Sox2, and Nestin. All NSCs were negative for Oct4. In addition, NSCs stained positive for Pax6, a known regulator in neurogenesis and molecular regulation of the central nervous system. ICC samples were stained with the Human Neural Stem Cell Immunocytochemistry Kit and analyzed on the FLoid® Cell Imaging Station.

B All iPSC-Derived NSC Lines Exhibit Expected Neural Markers by Flow Cytometry

ID	Gene	Mutation(s)	Nestin	SOX1	SOX2
Ctrl-1 NSCs	n/a	n/a	99%	77%	87%
PD-1 NSCs	PARKIN	Ex2del c. 102delAG	99%	98%	98%
Ctrl-2 NSCs	n/a	n/a	100%	94%	97%
PD-2 NSCs	LRRK2	G2019S, Heterozygous	100%	96%	92%
PD-3 NSCs	LRRK2/GBA	G2019s, N370S	100%	90%	87%
MSA NSCs	Unknown	Unknown	100%	89%	93%

Figure 3. Generation of PD-3 iPSCs with LRRK2 G2019S corrected to wild type.

500-bp flanking

the 140 colonies

Detection assay. Out of

screened, colonies 26

and 27 seemed to have

no detectable cleavage

product caused by

the heterozygous

PD-3.26 (LRRK2 Corrected) **B** LRRK2 Inhibitor (LRRK2-IN-1) Reverses Metabolic Differences Observed **Between LRRK2 Edited and Unedited NSCs** Prestoblue

C NSCs With a LRRK2 Mutation Show Greater Sensitivity to Compounds in a Mitochondrial Membrane Potential Assay. Effect is Reversible by Treatment

NSCs from PD-3 or PD-3.26 (G2019S LRRK2 mutation corrected) were grown overnight in Neurobasal Media with neural induction media supplement but without glucose (starvation media). (A) NSCs were stained with the LIVE/DEAD® Viability/Cytotoxicity Kit and counterstained with the NucBlue® dye. NSCs from PD-3 (LRRK2 mutant) are more susceptible to cell death than PD-3.26. (B) NSCs from PD-3 or PD3-26 were exposed to a dilution series of staurosporine or chloroquine in the presence or absence of the LRRK2-IN-1 for 24 hours. The PrestoBlue® Cell Viability Assay reveals that the metabolic difference observed between PD-3 and PD-3.26 is reversed by the LRRK2-IN-1. (C) NSCs from PD-3 or PD-3.26 were left untreated or treated with LRRK2-IN-1 for 24 hours. NSCs were then loaded with a mitochondrial membrane potential dye (m-MPI Codex[™]) and exposed to a dilution series of the indicated compounds for 2 hrs. or 6 hrs. NSCs from PD-3 showed greater sensitivity to TBHP and CCCP. The greater sensitivity to TBHP was reversed by pre-treatment with LRRK2-IN-1.

deleted and cannot produce infectious particles. Non-pathogenic to humans Broad tropism. Capable of transducing a wide range of cells with a short contact

iPSC generation and live-staining Reprogramming of fibroblasts to generate iPSCs and live-staining was performed according to the User Guide of the CytoTune[®] -iPS Sendai Reprogramming Kit (Life Technologies).

	Fibroblast culture	v	Day 1 Transduction vith CytoTune	PI	Day 7 ating on MEFs	Pi	Day 20-26 icking colonies		Colony expansion	cł	iPSC naracterization
1.	Plate 1.25x10 ⁵ cells/well of 6 -well plates coated with Attachment	1.	Follow the protocol described in the User Guide for the CytoTune™	1. 2.	Take images of cells before harvesting. Harvest cells using	1.	Observe the plates every day for the emergence of colonies.	1.	6 clones for each line were further expanded into 6 - well MEF plates	1. 2. 3.	Karyotype analysis Cell ID ICC for SSEA4, Oct4, Tra1-60 and
2.	Factor. Culture in a 37°C, 5% CO ₂ incubator for two days.	2.	reprogramming kit. Harvest the additionally plated	3.	room temp . Plate cells at multiple seeding	2.	Starting Day 17, pick and transfer the colonies to 12 - well MEF plates.	2.	and later cryopreserved. 3 of the 6 clones were further	4.	FACS analysis for Nanog and SSEA4. Pluripotent gene
3.	Culture additional cells for cell number control for accurate MOI		cells to determine the cell number for accurate MOI calculation	4.	densities onto 10 - cm MEF dishes. Day 8, change medium to iPSC	3.	Colonies are picked based on the morphology and/or LiveAP		expanded, cryopreserved and characterized.	6.	expression panel Embryoid body formation and staining for 3 germ
4.	determination. Culture additional cells for karyotype analysis and cell line ID.	3. 4.	Add CytoTune virus at MOI of 3 Take images of cells before the transduction and		medium and replace with fresh iPSC medium every day thereafter.	4.	staining. On average, 20 colonies were picked for each line.			7.	layer markers TaqMan Sendai detection to make sure transgene- free.
5.	Store remaining cells in RNALater for RNA extraction.		then every other day after media change.	5.	Store remaining cells in RNALater for RNA extraction.		inci				

Table 1. Reprogramming Efficiencies

		Day 7 plating density (# cells plated/10-cm MEF dish)				
		50,000 cells	100,000 cells	200,000 cells		
Donor	Mutation	SSEA4 ⁺ colonies (Efficiency)	SSEA4⁺ colonies (Efficiency)	SSEA4 ⁺ colonies (Efficiency)		
	Parkin	55	132	583		
PD-1	Γαικιι	(0.110%)	(0.13%)	(0.300%)		
		35	81	97		
GIN-1	-	(0.070%)	(0.08%)	(0.050%)		
2 00	I DDK2	55	63	193		
PD-2	LKKNZ	(0.110%)	(0.06%)	(0.100%)		
2 00		3	7	17		
FD-3	LNNZ/GDA	(0.006%)	(0.007%)	(0.009%)		
МСЛ		3	20	40		
WI5A		(0.006%)	(0.02%)	(0.020%)		
Ctrl 2		22	18	63		
UII-2		(0.044%)	(0.02%)	(0.031%)		

iPSC cells from all six donor lines tested positive for pluripotency (data not shown). Late passage (>p25) iPSC cells from MSA and Ctrl-2 tested positive for pluripotency and EBs showed potential for all three lineages.

MSA	MSA EBs	Ctrl2	Ctrl2 EBs
Pluri	Ecto Endo Meso	Pluri	Ecto Endo Meso
Pluripotency markers expressed. Test differentiated cells to determine utility.	Good general purpose pluripotent cell line.	Pluripotency markers expressed. Test differentiated cells to determine utility.	Good general purpose pluripotent cell line.

E Embryoid Body Formation and Immuno-characterization

 \sim

Ctrl-2

(Endoderm)

AFP / Hoechst®	βIII-tubulin / Hoechst®	SMA / Hoechst®

(Ectoderm)

A TAL editing of the PD-3 LRRK2 Mutation

6030 ATGCTGCCATCATT	6040 GCAAAGATTG	6050 CTGACTACR	6060 GCATTGCTCA	6070 GTACTGCTGT	6080 AGAATGG	(A) Sequence of LRRK2 G2019S region in the PD 3 line. The binding sites
atgctgccatcatt atgctgccatcatt	gcaaagattg gcaaagattg	ctgactacg ctgactaca	gcattgctca gcattgctca	gtactgctgt gtactgctgt	agaatgg agaatgg	for the TAL pair are
Forward LRRK2 TAL						TALs were electroporate
	500 bpg (~1 kb (getgaetae <mark>e</mark> donor fra	gcattgctcag agment)	tact…500 bp)	1-kb purified PCR donor fragment containing the

B Colony screening with GeneArt® Genomic **Cleavage Detection assay.**

screening with GeneArt® Colony # 22 23 24 26 27 28 29 30 31 (-) 32 34 35 36 Genomic Cleavage

C TaqMan[®] SNP genotyping assay

CONCLUSIONS in the PD

We have successfully generated iPSCs, NSCs and edited iPSCs from the dermal fibroblasts of 3 Parkinson's disease patients, one MSA patient, and 2 age-matched The control individuals using the CytoTune[®]-iPS Sendai Reprogramming Kit, Gibco[®] PSC roporated Neural Induction Medium, and GeneArt® Precision TALENs. ng with a > CytoTune[®]-iPS Sendai reprogramming kit is easy to use with high efficiency R donor > The resulting iPSCs express the expected pluripotency markers and are karyotypicallty normal. wild type sequence and \succ Line to line variations were observed during the reprogramming.

> Neural stem cells were rapidly obtained from monolayer cultures using the Gibco® sequences. (B) Colony PSC Neural Induction and these NSCs expressed the expected neural stem cell markers

> >GeneArt® Precision TALENs were used to correct the various disease mutations in order to provide genetically matched control cell model pairs >Functional differences were observed between the LRRK2 G2019S edited and unedited NSCs in a LIVE/DEAD® Cell Viability/Cytotoxicity Assay, PrestoBlue® Cell Viablity reagent, and a mitochondrial membrane potential assay (m-MPI Codex[™]) under starvation conditions.

mismatch, indicating that Given the efficiency, speed, and ease with which we were able to reprogram adult disease fibroblasts, it is clear that the CytoTune® -iPS Sendai Reprogramming Kit can mutation was corrected t be applied to large-scale reprogramming of multiple disease lines in an automated homozygous wild type or fashion. Similiarly, use of the Gibco® PSC Neural Induction will enable generation of NSCs, neurons and glia that may provide more relevant cell models when coupled with various assays to interrogate cell health or target-specific function. Finally, gene editing confirmed that clones 26 technologies, such as those enabled by TAL nuclease fusions, will allow us to address mutated genes, correct them to wild-type and generate matched cell model controls.

ACKNOWLEDGEMENTS

We thank Drs Uma Lakshmipathy, Mohan Vemuri, Jon Chesnut and Mark Powers for helpful discussions, Dr. Michael Hancock for generating directly-labeled pluripotent marker antibodies, and Steve Riddle for running Ion AmpliSeg[™] Inherited Disease Panel to confirm mutations in the PD fibroblast lines. We thank Siddhita Gopinath for cell authentication. The derivation of donor fibroblasts were funded by CIRM TR1-01246.

TRADEMARKS/LICENSING

For Research Use Only.

(Mesoderm)

